Predictive density estimation under the Wasserstein loss

نویسندگان

چکیده

We investigate predictive density estimation under the $L^2$ Wasserstein loss for location families and location-scale families. show that plug-in densities form a complete class Bayesian is given by with posterior mean of scale parameters. provide dominate best equivariant one in normal models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Predictive Density Estimation for Location Families under Integrated Absolute Error Loss

Tatsuya Kubokawa, Éric Marchand, William E. Strawderman a Department of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN (e-mail: [email protected]) b Université de Sherbrooke, Département de mathématiques, Sherbrooke Qc, CANADA, J1K 2R1 (e-mail: [email protected]) c Rutgers University, Department of Statistics and Biostatistics, 501 Hill Center, Bu...

متن کامل

On predictive density estimation for location families under integrated squared error loss

Tatsuya Kubokawa, Éric Marchand, William E. Strawderman a Department of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN (e-mail: [email protected]) b Université de Sherbrooke, Département de mathématiques, Sherbrooke Qc, CANADA, J1K 2R1 (e-mail: [email protected]) c Rutgers University, Department of Statistics and Biostatistics, 501 Hill Center, Bu...

متن کامل

Admissible Predictive Density Estimation

Let X|μ ∼ Np(μ,vxI ) and Y |μ ∼ Np(μ,vyI ) be independent pdimensional multivariate normal vectors with common unknown mean μ. Based on observing X = x, we consider the problem of estimating the true predictive density p(y|μ) of Y under expected Kullback–Leibler loss. Our focus here is the characterization of admissible procedures for this problem. We show that the class of all generalized Baye...

متن کامل

Density Estimation Under Constraints

We suggest a general method for tackling problems of density estimation under constraints. It is, in effect, a particular form of the weighted bootstrap, in which resampling weights are chosen so as to minimize distance from the empirical or uniform bootstrap distribution subject to the constraints being satisfied. A number of constraints are treated as examples. They include conditions on mome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2021

ISSN: ['1873-1171', '0378-3758']

DOI: https://doi.org/10.1016/j.jspi.2020.05.005